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Abstract

In a previous paper (Yehia H M 1986 J. Mec. Theor. Appl. 5 55-71) we have
introduced a method for constructing integrable conservative two-dimensional
mechanical systems whose second integral of motion is polynomial in the
velocities. This method has proved successful in constructing a multitude
of irreversible systems (involving gyroscopic forces) with a second quadratic
integral (Yehia HM 1992 J. Phys. A: Math. Gen. 25 197-221). The objective
of this paper is to apply the same method for the systematic construction of
mechanical systems with a cubic integral. As in our previous works, the
configuration space is not assumed to be a Euclidean plane. This widens
the range of applicability of the results to diverse mechanical systems to
include such problems as rigid body dynamics. Several new reversible and
irreversible integrable systems are obtained. Some of these systems generalize
previously known ones by introducing additional parameters which may change
either or both of the configuration manifold and the potential of the forces acting
on the system. Other systems are completely new. An application is given to
problems of rigid body dynamics. The famous classical integrable case due
to Goriachev and Chaplygin and all its subsequent generalizations by several
authors are further generalized to include certain variable gyroscopic forces that
preserve a cubic integral. On the other hand, the above case and another less
famous case of rigid body dynamics due to Goriachev and the Hall-Toda case of
particle mechanics are all obtained as special cases, corresponding to different
choices of certain parameters, from one more general system unifying them all.

PACS numbers: 45.20.Jj, 45.40.—f, 45.50.—j, 02.30.1k

1. Introduction

It is well known that mechanical systems are, as a rule, nonintegrable. Nevertheless, there is
no general method for deciding about the integrability of a given mechanical system and, in the

0305-4470/02/449469+19$30.00  © 2002 IOP Publishing Ltd  Printed in the UK 9469


http://stacks.iop.org/ja/35/9469

9470 H M Yehia

case of integrability, to construct its integrals. It is thus of great importance to construct new
integrable systems and to tabulate all the known ones of certain common types. Enormous
efforts have been dedicated to this direction of research over the last few decades. Most of
the interest has concentrated on the system composed of a single particle moving in the plane
under the action of stationary potential forces whose second integral is polynomial in the
velocities. The problem for this system is to find the potential compatible with a given ansatz
of the integral and, in the process, to determine the coefficients in this integral. However, only
a few integrable cases have been found. In the majority of these cases, the additional first
integral is a polynomial in the generalized velocities. For a nearly complete review up to 1985
see [3]. The diversity of methods for obtaining the additional integral in each of these cases
points to the need for a unified and systematic criterion for their detection.

The above problem can be generalized in two different directions to enhance the
applicability of the results, while preserving the frame of investigation in two dimensions.
Firstly, we do not restrict the configuration space to the Euclidean plane. Secondly, we allow
gyroscopic forces (conservative zero-potential forces), that is forces appearing due to terms
linear in the velocities in the Lagrangian of the system (see, for example, [2]). In this new
setting, the above problem includes a wide class of mechanical problems. To this type belongs,
for example, the problem of motion of a natural mechanical system with n degrees of freedom,
having n — 2 cyclic coordinates. Another example is the problem of motion of a particle on
a smooth (fixed or rotating) surface under a variety of forces. Further examples are given
by the problem of motion about a fixed point of a rigid body acted upon by potential and
gyroscopic forces that allow a cyclic variable [5, 6]. The general problem of inertial motion
of a body in an infinite ideal incompressible fluid has been shown to belong to the type under
consideration [8].

All such systems can be described by or reduced to a system with Lagrangian

L= %(allqlz+2a125]1t}2+azzt}22)+a15]1+azt']2—V 1)

where the six coefficients a;;, a;, V are functions of g1, g» and the dots denote differentiation
with respect to time 7. According to a theorem of Birkhoff [9], there always exists a coordinate
transformation' that reduces equation (1) to a system of the type

L=3iAG+y)+lit+hy -V 2)

where A, V, [, [, are certain functions of x, y.
The Lagrangian system (2) admits the Jacobi integral:

L =IAE+9)+V =h. 3)

If this system admits an additional first integral, independent of equation (3), then this system
is integrable, i.e. the solution of the mechanical problem reduces to a number of quadratures
and to the inversion of certain integrals. This is always guaranteed by the Liouville theorem for
the equivalent Hamiltonian system (see, for example, [4]). However, the final solution—the
explicit expressions of x, y as functions of #—is not always the principal aim in the mechanical
problem. The greater part of the qualitative properties of motion can be deduced directly from
the forms of the two known first integrals of the problem.

By transformation to isometric coordinates, the number of functions figuring in the
Lagrangian is reduced from six in equation (1) to four in equation (3). Now we make a further
step. Let us introduce a new independent variable t by the relation

dt = Adr “)

! Transformation to isometric coordinates on the configurational space.
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so that
= —xt =~y 5)
X = —X = —
A YT
where the asterisk denotes differentiation with respect to t. The Lagrangian (2) takes the form
L=102+y?)+Lx* +Ly +U (6)
in which
U=AMh-V). (7

The Jacobi constant / enters as a parameter in the new potential —U. To preserve the Jacobi
integral (3) under the transformation (4), (5), a superfluous Jacobi constant of the transformed
system (6) must be set equal to zero. Thus we have to consider the simultaneous system of
differential equations

oUu aUu
y** Oyt = —— x*Z + y*z =2U (8)

QY —
* Y ax dy

o _ ob

where Q2 = ay ~ ox- These equations can be interpreted as describing equienergetic motions
of an electrically charged particle under the combined action of electric and magnetic fields.
They involve only two functions U and €2, instead of six in the original system (1). Hence they
constitute the simplest basis for the search of the second integral. When Q2 = 0 the gyroscopic
terms in system (8) vanish and the system becomes time-reversible.

The system (8) enjoys one more useful advantage over Lagrangian and Hamiltonian
forms of equations for the same system. It is form-invariant under conformal mappings of the
complex plane z = x +1iy. It is easy to show that the change of variables

. dz |* -
z=2(%) t=&+1in dr:‘— dt 9)
dg
transforms system (8) to
. U - U ~
E// + Qn/ — n// _ Qé}/ — 5/2 + n/z — 2U (10)
0 an

where U = |g—§‘2U Q= g—§|2 Q and primes denote differentiation with respect to 7.

Birkhoff raised and completely solved the problem of finding all possible pairs U, €2 for
which system (8) admits an additional integral linear in the velocities [9]. He also found that
system (8) in the reversible case €2 = 0 admits a quadratic second integral only when it has the
structure of a Liouville system [9]. The special case 2 = 0, A = 1 characterizes the problem
of motion of a particle under the action of potential forces in the Euclidean plane, which reduce
to Liouville’s form in elliptic coordinates or any of their degenerations: parabolic, polar and
Cartesian coordinates. For detailed analysis and history see [2] and references therein.

In our work [1] a method was developed for the construction of mechanical system (8) for
which a second integral exists in the form of a polynomial of arbitrary degree in the velocities.
This method, which generalizes that of Birkhoff, has proved effective in constructing several
new integrable problems in the dynamics of particles and rigid bodies [1, 2, 10]. It was highly
successful in the systematic investigation of the existence of a quadratic second integral in the
irreversible case (2 # 0). In [2] all the possible irreversible systems admitting a quadratic
integral were classified into three types, according to whether the metric on the configuration
space has the structure of a metric in the Euclidean plane, on a surface of revolution or a
generic Liouville surface. All cases of the first two types are obtained explicitly. Several
many-parameter systems of the third type were also found.
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A similar method was developed independently by Hall [13] for the case of plane motion
of a particle (A = 1). In view of the complexity of Hall’s equations, his method was used
only in the reversible case (2 = 0). In our method, additional transformations of the type (9)
are used. This leads to significant simplification in the form of the governing equations and
of their solutions.

In this paper, we apply the method introduced in [1], and used also in [2], to construct
mechanical systems of the type (10) which admit a cubic second integral, i.e. to find possible
function pairs U,  and the corresponding coefficients in the integrals. It is worth noting that,
after all possible systems of this type are obtained, a general point transformation and suitable
time change will lead to all possible systems of the type (1) that have cubic integral.

The general cubic integral can be expressed as the sum of four homogeneous polynomials
in&’, 5/, all involving ten coefficients as functions of the variables &, 1. As has been proved in
[1] for the general case of a polynomial integral, using a suitable transformation of the form
(9) and the Jacobi integral in (10), we can always reduce this integral to the form

[ =7+ PE” + 0260 + PE + On' + R = const (11)

involving only five functions of &, . Differentiating (11) with respect to T and using Jacobi’s
integral again as in [1] and [2], we obtain the system of nonlinear partial differential equations:

P, 00>

0§ an

aP, 0

W 3% 46

an 0§

aP 90

— = — +2Q0,+3U: =0

9§ 9y

oP 9

—+—Q—2QP2=O (12)
an 0§

R 00>

— +QO+2PU: + QoU, +2U— =0
oF 0 2Us + Q2Uy o

dR

——QP+Q2U$ =0

an

3
PU: + QU, +2U3—Q —2QUQ, = 0.
n

That is, seven equations in seven unknown functions. It is not known, however, if this system
is integrable, in the sense that its complete set of solutions can be found.

It is evident that any solution of the system (12), involving or not involving arbitrary
parameters, can be interpreted as determining a mechanical system that admits a cubic integral
on its zero level of the Jacobi integral. If it happens that in this solution the function U has the
structure U + cU |, where c is an arbitrary constant, then U; can be identified as the coefficient
A in equation (7) and ¢ as Jacobi’s constant. It may even happen, as seen below, that ¢ and U,
can be chosen in more than one way. In some cases, the same constant enters in one or more
of the coefficients of the integral. To obtain an unrestricted integral of motion, this constant
should be eliminated in virtue of Jacobi’s integral. Note that this process changes the structure
of the polynomial second integral and can even change its degree. For some typical such
situations see [11].

Regarding the second equation of the last system and the definition of 2 at the beginning
of this section, one can now construct a Lagrangian compatible with the integral (11) as

L=3E?+n")+ (P& — Q)+ U. (13)
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Obviously, this choice is not unique. One can always add the time derivative of an arbitrary
function of the two coordinate variables. Note also that a change of the time variable from t
to t according to the relation

dt = xdr (14)
in which x = x (&, n), reduces equation (13) to the form

1 . 1 .
L= 2—(52 +1%) + = (P2 — Qo) + xU. (15)
X 3

This situation is frequently utilized below.

The system of equations of motion (10) is, in general, time irreversible due to the presence
of the gyroscopic terms. When @ = 0, the equations of motion become reversible and the
integral of motion must reflect this property. The integral decomposes to even and odd parts,
which are also integrals. In our case the integral takes the form

I =£°+ P& + Qn' = const (16)
where P, Q satisfy with U the system of three partial differential equations:
oP 90 aP 030 a0
— — —+3Us=0 —+—=0 PU: +QU,+2U— =0. a7
a& d an 0 an

This system is much simpler than system (12). Any solution of it determines a reversible
mechanical system and its cubic integral. Once a solution for this system is obtained, one
can try to add a function €2 in a suitable form and corresponding terms to the integral. This
procedure has turned out to be more effective in dealing with the system (12). Some examples
are given below.

The system (17) can be reduced to a single partial differential equation. In fact, it is
always possible to satisfy the first two equations identically by expressing the three unknown
functions in the form

P = Fi Q=—F, U=-1iV’F (18)

involving only one function. The third equation gives the nonlinear equation of the third order
and second degree
FieV?Fy — Fe) V2 F, — 2F;,, V2 F = 0. (19)
However, with further analysis it turns out to be easier to deal with system (17) than with this
single equation.
Having no obvious way to obtain the general solution of system (17), one has to add
some simplifying assumptions about the structure of the unknown functions. Inspired by

the structure of the transformed potential in the integrable case of Goriatchev and Chaplygin
(see [1]), we investigate the solution of system (17) for a function U that has the structure

U=u(@m)+vm®e(E). (20)

A few considerations lead to the following two choices.

2. Construction of reversible systems: first choice

If ®”(£) = const = 2a (say), then one can take ®(£) = a&? + b€ + ¢, where b and c are
constants. Using this in equations (20) and (17) we come to the conclusion that the remaining
functions should have the form

P =p+ya&®+bE+c) 0 = (2at +b)g U=u+a&*+bt+c) (21)
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where y is an arbitrary constant and ¢, v, u, p are functions of n. Equating coefficients of
equal powers of £, we find that ¢, v are given by

1d 1 1 d?
g=—FL v=—y——°P (22)
2a dn 3 6a dn?
and that u satisfies the equation
dpd d? 1 d?
L Sl AP (L A A (23)
dndn  dn? 35 \dn?
Thus it can be expressed as
h 1 dp d®
M:W—T[yap2+/ d_pd_l;dnj| (24)
(@) 3(5) "

where £ is a new constant. Thus we have expressed all functions in terms of a single function
p which can be shown to satisfy the third-order equation

dp &3 &p\’ &

PP (L) 127058 —4p2a? =0 (25)
dn dn? dn? n

Here we have separated the integration constant 4 for its importance in all of what follows.

Summing up, we can now construct the restricted integrable Lagrangian

1, , h 1 1 dp d*p
:§(§2+n2)+ dpz—m[iyapz—i-/ d—ﬁdn}
(&) 3(2) nan
1 1 d?p 2
_<gy+ad—n2’> (aé +b§+c) (26)
admitting the integral
1d
1= 6" +[p+y(ag +bE + Ol + 3--L(2ag +b)n @7)
a dan

where p is any solution of equation (25). For clarity of the results, we distinguish the following
cases, in each of which it is useful to follow a different path to the final solution.

2.1. The Holt system
When y = 0, equation (25) has the general solution

p() = K(n—no)’ — 6h,

in which K, no, h; are arbitrary constants. Without loss of generality we take no = 0 and
rename the parameter K. This leads to the construction of the Lagrangian

a(3n+8) +bs—hy hl}
U

2 (28)

Wi

1
L = _(%./2 +n/2) _ [
and the two integrals of the system
3.2, ¢2
alzn +&°)+b& —h
(4’7 ‘i: ) ‘i: 2 _ ]’ll -0

27 ! 29
I =£°+ <7an;1 - 6h1) £ —9(2aE +b)yin.

1 /. /.
h=5E"+n"+

Wi
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This system characterizes a particle moving in the &n-plane under potential forces involving
the three parameters a, b and h,. The additive parameter /; in the Lagrangian (28) does not
enter in the equations of motion and can be discarded from the Lagrangian. This constant,
however, enters in the energy integral as the arbitrary energy constant and should be substituted
from that integral in equations (29) to give the unrestricted second integral of motion
2 2
=284 3y 4320 RO T h) T3AW e byt 30)
]’} 3

This system reduces to Holt’s system [17] when one sets b = O but the casea = 0,b # 0
is not a subcase of Holt’s system.

The presence of four parameters in the Lagrangian (28) makes it possible to generate
other Lagrangian systems by means of a time transformation as described in the introduction.
As an example we use the transformation

1w

dr = 2ydt E=ux n=(3y) (31)
to obtain the integrable Lagrangian
1 (3x? 2 2
L=-|=+y")—- 24293 ) 4bx — Zhyy|+h 32
E B Ca ) AR

for which h, is the arbitrary energy constant. Note that &; is now a parameter in the
potential. The cubic integral can be deduced from that in equations (29) by affecting the

transformation (31). It may be interesting to note that the line element on the configuration
2 . .
space ds? = % +dy? has negative Gaussian curvature k = —4)%.

2.2. The generic case
When y # 0, one can set, without loss of generality, y = 1/2. Introducing the notation
P =ve o p' =z (33)
and thus admitting that
ENSTE

we reduce equation (25) to the separable first-order equation
td: Qi-a)cra) _
d¢ 2z N

The general solution of equation (35) can be readily obtained in the form

0. (35)

IS (z - %) (z +a)® = const. (36)

The problem now arises that neither of the variables z and ¢ admits a simple expression
in terms of the other, to be effectively used in equation (34). Therefore we try a rational
parametrization of the family of curves (36) in the form

_ay3—2b0 _y3+b0
Z_Z v3 + by y?

(37)

involving the parameter by. Substituting this into equation (36) we obtain, for the constant on
the right-hand side, the arbitrary value — %b0a3. It is more useful to use for the constant by in
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equation (36) the ratio of two constants %, and thus we obtain the final parametrization of the

family of curves
a By’ —2C By*+C
g2 T 2P T (38)
2 By}+C By?

Inserting the previous expressions into the results (34), (26) and (27), we finish
constructing the system with the Lagrangian

;! 2y By’+C , hy> By By'(ax’+bx+c) (39)
2 ay* a(By3+C) 4 4(By*+C)
and the conditional integral
2By? — C +y*(ax*+bx + By}+C)(2ax +b
[ ny 2By yax"+bx+c) , (By )(3ax )y/ 40)

2y? 2ay-
valid on its zero-energy level.

In the expressions (39) and (40) and in the rest of this section the variable & has been
renamed x. We also use the freedom to change the variable t to ¢ by a relation of the type (14)
_dt
G

where G = G(x, y) is a given function. After this, expressions (39) and (40) acquire the
forms

dr (41)

1 By’ +C 1 hy? B By3(ax* + bx +
L=lole e B ACp L By Bylaxtbrto) (42)
2 ay* G la(By3+C) 4 4(By3+C)
and
2By? — C + y2(ax*+ bx + By’ +C)(ax +b
[=(Gi)P®+G=2 yaxvbito), By+OGax+h, (43)

2y2 2ay

Formulae (42) and (43) still characterize a system integrable on its zero-energy level
for any reasonable choice of the function G. However, only certain choices allow a suitable
additive arbitrary constant to appear in the Lagrangian and thus to be interpreted as the energy
constant. To clarify this situation we proceed as follows. Firstly, we rename the parameters

h
h:fﬂmK b=b, — 45K c=c —4BK
and thus introduce the new parameters «, 8, § and K. Secondly, we use a time transformation
of the type (41) with

_ Yo+ By +5xy)

G
By3+C

(44)

We now write down the resulting unconditional Lagrangian system and its two first integrals
in their final forms:

1 y2x2 yZ
L=—(a+py+s 4
2(0{ Py +oxy) |:By3 +C  ay?

1 h C
+— —l—y(By+ax2+b1x+cl)—— +K 45)
4(ax+ By +6xy) | Ba y
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y2x2 )')2 }

1
I = (e +By+36 ——t
1 2(0l By +dxy) |:By3+C ay?

! hy (By +ax2 +bix +¢1) “l_x (46)
- — - ax X+c)——¢ =
4(a + By +6xy) | Ba YRy : : y
I ¥ (o + By + 8xy)? 2By} — C + (ax*> +bx +c))y? .
_ X
? (By? + C)? By +C
2ax +b 4 2(8+6 k)
_2axtbig Aoy Bron) s
ay B By’ +C ay

1
x3+§(a+,3y+5xy){

(47)

Note that the presence of the arbitrary parameter K in equation (45) is insignificant and it can
be ignored. The same arbitrary constant K is now interpreted as the value of the energy integral
I,. Note also that /; in equation (47) should be replaced by its expression (47) in terms of the
state variables.

The system (45)—(47) involves nine arbitrary parameters «, 8, §, B, C, a, h, by and c;.
The first six parameters contribute to the structure of the line element on the configuration
manifold as seen from equation (45) and the last three enter only in the potential part of
the Lagrangian. We are not able, at present, to give a mechanical interpretation for the full
system. The following two special cases may indicate the richness of this system. For these,
we provide only L and I; the variable y is transformed so that the metric is reduced again to
the semi-geodesic form and indices are dropped from the parameters b and c.

1. The first system is obtained from equation (45) by setting 8 = § = 0 and ¢ = 1. It has
the Lagrangian

1 1 1 1 1
L= W2+ =y —-aB?e® + —aBCe™™ — —(ax’>+bx +c)Bae®
2a(Be® —2C e ) 2 4 2 4

(48)

and admits the unconditional second integral

X 3 2Be+Ce ) tax +bx+c b\
I = , + : X—(x+—)y.
a(Be®w —2C e 2ay) 2a(Bew —2C e 2a) 2a

(49)
In the special case when C = 0, the system (48) and (49) reduces to
1 1 1 1
L=—¢e %%+ -y> ——aB?e® — —(ax’* +bx +c)Bae” +h (50)
2Ba 2 4 4
L =e7 Y%+ 1B?a*[2B + e “ (ax” + bx + ¢)]x — 1 B’a*(2ax + b)y. (51)

It is of interest to note that the line element of the last system has constant negative
Gaussian curvature — %az. This system can be interpreted as an integrable case of motion
on the pseudo-sphere.

2. The second system corresponds to the case « = § = 0. The final result for this case is

ay®i? I, 1 5 , 2C 4h )
L=——————+—-y " ——a’B|By" —— — —— +ax" +bx (52)
8(By® —2C) 2 16 y*  aBy?
Cy12 3 2y6 .2 ay2(4BaC +4hy2 +aBzy6) )
L, = X — Xy + X
(By® —2C)3 a(By® —2C) 4(By® —20C)

1
— EBa(Zax +Db)yy. (53)
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This system is also new. The Gaussian curvature of the configuration space is

B 6C(7By® +4C)

O YABY =200
When C = 0 the last system can be identified with the Holt superintegrable separable
system describing the plane motion of a particle [17].

3. Reversible systems: second choice

If ®”(&) is not identically constant then
P = po+pmP () 0 =qm®'&) (54)

where py is a constant,

Acos /(& — &) when u© >0
dE) = 55
® {AeN/T‘é +Be VK when u <0 (53)
and the four functions p(n), ¢(n), u(n), v(n) satisfy the five equations
p'(m —nqm) =0 q'(m) — p(n) —3v() =0 56)
24/ (M) +q(N B + poiB =0 3¢'() +q( 5L —3v(n) =0
where  is a separation constant (i« 7% 0). The solution of this system can be written as
p'(n) p"(n) — up(n) ¢ P
q= v u=—— ———[p?() - up* ()] (57)
u 3p q° 6uq
where c is an integration constant and either p(n) satisfies the third-order nonlinear differential
equation
dp &p 2p\’ d2p ap\>
— 2| =) —uwp— - — ) - =0. 58
an dp an? P T M\ ay wp (58)

Equation (58) admits reduction to a first-order equation. Introducing new variables z and
Z by the relations

P _ s oy =2z (59)

p(n)
we can write

—eif 3 =l/£d 60

p=¢e n=5| & (60)

and the whole problem is reduced to the Abel differential equation
dz
Z 2d—Z +7z—p)+z(z—p)Bz+un) =0. (61)

The latter equation was obtained in our earlier work [1], in the search for integrable motions
of a rigid body system with a cubic second integral. The general solution of this equation was
found but used only in the interest of the rigid body dynamics. Recently, in the search for
integrable systems on S? possessing an integral cubic in momenta [16], Selivanova obtained
a pair of first-order equations, equivalent (can be reduced) to equation (58). Having not
found their solution, she tried a series of existence theorems and asymptotic properties of the
solution [16].
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Here we construct the general solution of equation (61) using the Darboux method
(see, for example, [12]). We first find by trial some simple polynomial and algebraic particular
solutions

Zi=—z2(z— )

1
Z, = _Z(Z —w)(Bz+ )

(62)
1
Zya= =5 Gz +w) |Gz = £ VuGz+ )]
e u W
Zse=—(z2— +—-=£ —(+—).
5.6 (z M)[z > ¢ e 2}

Moreover, we try to put the solution in the form
(Z = Z)™Z = Z)™UZ ~ Z3)(Z = ZD)I"(Z — Z5)(Z — Ze)]™ = const (63)
where dj, ..., ds are constants to be determined. Differentiating with respect to z and using

equation (61) we find two independent combinations leading to the two equivalent forms of
the first integral (the general solution)

(Z+z2Gz—wP[(Z+2* - %2)2 —5(z+ ’

W=
~

= const (64)
((Z+G-we+5] - be-w+5)
and
[4Z + (z — WGz + W]’ — const — o 65)
B2Z + (z — )Rz + W)? — u(z — w?>Qz + p))? B2u?

where « and § are arbitrary constants.

Equations (64) and (65) are of the fourth degree in Z and the eighth degree in z. Instead
of trying an explicit solution, it is more convenient to parametrize that curve. We soon realize
that the last form of the integral is most suited for this. Introducing a new variable v by the
relations

2
a(z —
4Z+(z—w)Bz+np) = (7;”
2v
uB(z— 1)’ ©o
32Z+ (2= wQz+ WP = p(z = Qe+ p) = = ——
so that equation (65) is satisfied identically, and solving those relations we obtain
_ wBa? +4v — 12002 — 4v%)
- 2 2
2v2 + ) 67)
7 - 2u(B — 6av — 4v3) (af — 120%v — 682 + 8av?)
- 9212 +a)* '

Substituting into equations (60) and (57) we obtain the full parametric solution of
equation (58) and construct the system with the Lagrangian

1 [<§)2+3(3a2+4ﬁu — 12002 — 4% <@)2] 2pov + 3h1) (43 + 6av — B)

L=—
2| \dr w(4v3 + 60y — B)2 dr 3(Ba? +4Bv — 12av2 — 4v*)

N 4(4v3 + 6av — B)3/?
Ba? +4Bv — 12av? — 4v%)

(&) (68)
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and the second first integral

L <§)3+ L 6@+ 0@ | i 6Ga’+4By — 12002 — 4/ () <@>
- \d po V4v3 +6av — B dr )

dr w43 + 60y — B)3/2
(69)

This integral is valid only on the zero-energy level of this system. However, the Lagrangian
(68) contains two free parameters pg, #; and a change (4) of the independent variable can
transform the system to an unconstrained one. This is done in the next section, after we
complete the second stage of building the system extending the last one to the irreversible
case.

4. Irreversible systems

Now we turn our attention to the case of an irreversible system. The coefficients in the integral
of such a system in its normalized form (11) together with the two functions U and 2 satisfy
the system of partial differential equations (12). For simplicity we restrict the consideration
to the case when 2 = (1) only, while U still has the same structure as in equation (20),
ie. U =u(m) +v(n)®PE) +ui(n). Inserting those expressions into equation (12) we easily
conclude that a possible solution of the simplest structure can be tried in the form

Py = P(n) 0,=0
P =po+pm®E)+pi(n) 0 =qmP'(®) (70)
R = Ro(n) + Ri(m) ().

The newly introduced functions satisfy the equations
3Q@m) — P,(n) =0
pi(m) = 3P2(m) Py(n) = 0
piv+qu'(n) +2u1(ng’(n) =0
Ry(m) — Q(po+p1(m) =0
Ri(m) +Q(mq +2vP(n) =0
R\ (n) — pQ(n) = 0.

The first five of these equations can be solved in terms of one unknown function P,

(71)

1
QM) = 51’2/(77)
1 2
pi(n) = §P2 (m
1
ui(n) = —@/quf(n)dn (72)
1 1
Ro(n) = 3 [ponm) + §P23(77)}

1
Ri(n) = — (gql’z'(??) +2vP2(77)) .

Here we have ignored an integration constant in p; () since it can be absorbed in the already
existing arbitrary constant py. Note that the integration constant in Ry(#) is also insignificant,
since it adds a constant to the second integral of motion.
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Also, from the compatibility of the last equation of (71) with the one before it, we obtain
a linear equation determining P»(7) in the form

PPy () +[3p"(n) — plP5(n) + 6V (n) P(n) = 0. (73)

Taking the formulae of subsection 2.1.1 into account we can reduce equation (73) to the more
convenient form

d*p, 4v3 + 6av — dpP; (4v3 + 6av — B)?
dv2 32 +4Bv — 12002 — 4t dv [ (aZ +48v — 12av? — 4p#)?
+9 20 + o
3a2 +4Bv — 12002 — 4v*

} P =0 (74)

whose general solution can be written as

P 3C(2v2 +a) + D@V — 6av +28)
°T 32 +48v — 12av? — 4v*

(75)

where C and D are arbitrary constants.
Inserting this expression into equation (72) and using equations (70), (13) and (11), we
construct the Lagrangian

1 |:<d§)2 (3a2 +4Bv — 12av? — 41 <du)2]
L =—- — ] +3 —
2 | \dz w43 +6av — B)? dr

C(2U2+a)+D(4V3—6OlU+2IB) dg (4U3+6Oll)—,3)
307 +4Bv — 12007 — vt T 3(37 +4Bv — 12av? — )
2C%v +6CDQ2v? — &) + 6D (413 — /3)}

2pov + 3k, +
X[”OV ! 302 + 4By — 12av? — 4

4(4v3 + 6av — )32
Ba? +4Bv — 12av? — 4v%)

(&) (76)

and construct the second first integral

S <§)3 . 3C(2u2 +a) + D43 — 6av +28) (ﬁ)z
dr 3a2 +4Bv — 12002 — 4v* dr
. {p0+ 62’ +a)P(E) |:C(2v2+a) + D43 — 6av +2/3)]2} dg
VA3 +6av — B 32 +48v — 12av? — 4v* dr
63 + 4By — 1201 — 4vHD'(E) [(dv
a (43 +6av — B)3/2 (E)
.\ 4./403 + 6av — B[2CY +3D(2v* + )]
Ba? +4Bv — 12av? — 4v%)
C(2v? +a) + D(4v? — 6av +28)
3a2 +4Bv — 12002 — 4v*
C2V? +a) + D@V — 6av+28) 7]
x{p0+|: 302 +48v — 12av? — 4v* j| }

(&)

(77)
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valid on the zero level of the Jacobi integral

1| /de\? 3 (Ba2 +4v — 1200% — 4% [dv? (43 +6av — 1)
2 | \dt w(4v3 +6av — 1)2 dr 3(3a? +4v — 12av? — 40v%)

2C%v +6CDQ2v* — a) + 6D (4v® — ,3)}

Ji =

3a2 +4v — 12av? — 4v*
4(4v3 + 6av — 1)37?
- Ba? +4v — 12av? — 41%)
Thus we have completed dressing the restricted system (68) and (69) by gyroscopic forces.
It remains now to construct the equivalent unrestricted systems.

X [2p0v+3h1 +

®(§) =0. (78)

4.1. The generic unconditional case

We first express the parameters pg and % in terms of five new parameters
po=3(a+yK) hy =b+38K (79)
and then we perform the time transformation
dr — Ba? +4Bv — 12av? — 4v*)
(yv+8)(4v3 + 6av — B)
to the above system. Thus we obtain the Lagrangian
1| (yv+8)@P+6av—B) [dE\? 3(yv+8) dv\?
2 |:(3012 +4Bv — 12002 — 414) <E> " w43 +6av — B) <E) j|
CQ2v? +a) + D(4v? — 6av +2p) d& 1
Ga? +4Bv — 1200 — &%) At 3(yv+9)

2C20 +6CD2v? — &) + 6DX(41° —
L 2C0HOCDRY — ) + 6DV = ) | s e T B ) | (+K)
3a2 +4Bv — 12002 — 41?4
(81)

where we have ignored K, a free additive parameter which we will accept as Jacobi’s constant
for this system. Thus, we have the unconditional integral

L[ (v+8)@v +6av — B) §2+ 3(yv+9) dv)?
'T 2| BaZ+4By — 12017 — 4vh) <dt> w(4v3 + 6av — B) <dt>

1 2C%0 +6CD(2v?> — @) +6D* (413 — B)
3(yv+9) 3a2 +4Bv — 12002 — 414

+4/4v3 + 6y — ,3(1)(5)} — K. (82)

The final form of the second integral is

[ (yv +8)(dV3 + 60y — B) .T
L=

dt (80)

|:3(av+b)

|:3(av +b)+

Ba? +4Bv — 12av? — 4v4)$
Cv* +a) + D4V — 6av +28)
Ba? +4Bv — 12av? — 4v4)3
6(2v2 +a)® (&)

V43 +6av — B

(yv +8)2 (403 + 6av — B)2E?

3
+ {§(a+yll)+
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|:C(2v2 +a)+ D@V — 6av + 2/3)}2} (yv +8)(4V3 + 6av — B) :

3a2 +4Bv — 12002 — 4v* Ba? +4Bv — 12av? — 4v%)
6(yv +8)P'(£) - 4/4v3 + 6av — B[2CV +3D(2V? + )] ©
/403 + 60y — B Ba? +4Bv — 12av? — 4v%)
C(2v? +a) + D(4v? — 6av +28)
a2 +4Bv — 12002 — 4v*
C(2v2 +a) + DAV — 6av + 2/3)}2}
302 +4Bv — 12002 — 4v* '

&)

x:%(a+yll)+|: (33)

4.2. Special cases

4.2.1. An irreversible generalization of the Toda system. The simplest special case of
the latter system is obtained if we set « = 8 = § = a = 0,y = 1. Firstly, we
examine the line element of the configuration manifold in that case. From equation (81)
we obtain ds? = d&2 — ﬁ dv?. Choosing ;1 = —3 and introducing the change of variables
E=x,v= e, we reduce the metric to the Euclidean form and the Lagrangian (81) reduces

to the form
L=3@+3)—1(Ce ™™ +2De™™)x - 3(A e +V3x | Bey_ﬁx)
+ %Cz e+ CDe ™ +2D*e™ —pe ¥ (84)
We write the final form of the cubic integral of the Lagrangian (84)
[=3=3iy? —9(3Ce™ +De™®)i?+3(Ce™ +2De )y? + (SA o +ix

+8Be" V¥ 4+4C2e ¥ £ 18CD e +24D% e — 6b e—2>‘) #
—8v3 (A 3 _ eY*ﬁX) j— C3e ' 702 Dpe ! _18CDe ™
+(3Ch—16D% e~ +6Dbe* — 32D (A eV LB e—y—@)

—8C (A Ry e—3>'—ﬁX) . (85)

Expressions (84) and (85) characterize an irreversible system generalizing the reversible
Toda-like system obtained by Hall [13] by the presence of the two parameters C and D and it
reduces to it when C = D = 0. This two-parameter generalization invokes a magnetic field
Q=2 (C e™+D e‘zy) perpendicular to the plane of motion affecting a unit electric charge
on the moving particle and adds to the Hall potential the terms £ C? e 8 +CD e % +2D%e ™%,
In the special case, when A = B = 0, the system (84) becomes superintegrable since x
becomes a cyclic integral itself. If, moreover, C = D = py = 0, this superintegrable system
reduces to that discussed by Leach [15].

It is also worth noting that the system described by equation (84) can be transformed
into another form also describing the motion of a particle in the Euclidean plane. In fact,
performing in equation (84) the transformation

§=60  p=-lnr  0'=r%0 (86)
we obtain a system that describes—in polar coordinates r, 9—the plane motion of a particle
whose potential is not periodic in the angle 6. This can be used as a model for a real problem

only if the particle is not permitted to make complete revolution about the origin. When
C = D = 0 the latter system is reduced to that obtained earlier in [14].
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4.2.2. The case of elliptic potential. When y = b = 0, § = 1, one can introduce a new
variable y by the relation

(87)

_ / dv
Y= VA3 +6av — B
v =p(y; —6a, B) Va3 +6av — B = p'(y; —6a, B) (88)

one can express the Lagrangian (81) and the integral (83) explicitly as elliptic functions in the
variable y.

Noting that

5. Application to dynamics of rigid bodies

Since it is not known yet where most of the new integrable systems constructed above can be
applied, it would be useful to demonstrate the richness of the new results by showing how
some of them generalize certain known results. The generalization of the Toda system has
been presented in the previous section. Here we show that a wide generalization of the most
famous integrable case of motion with a cubic integral in rigid body dynamics results as a
special case from the system (81).

5.1. Equations of motion of the rigid body

Consider the problem of motion of a rigid body about a fixed point under the action of a
combination of conservative potential and gyroscopic forces, described by the Lagrangian

L=iwl-w+l-w-V (89)

where I = diag(A, B, C) is the inertia matrix of the body. Assume that all the forces acting
on the body have the Z-axis (say) as a common axis of symmetry. The potential V and the
vector 1 depend only on the Eulerian angles 6 (of nutation) and ¢ (of proper rotation) through
the direction cosines v = (y1, 2, ¥3) = (sinf sin ¢, sin6 cos ¢, cos ) of the Z-axis. The
equations of motion of a rigid body are usually written in the Euler—Poisson variables w, ~.
For the present problem this form, corresponding to equation (89), is

av
wI+wx(w1+u)=*yxa— Y+wxy=0 (90)
~
where
ad a
p=_—0y = 1) oD
avy a7y

For such a system, the angle of precession i around the Z-axis is a cyclic variable.
Moreover, we restrict our consideration to the case when the body exhibits axial dynamical
symmetry A = B and the vector I lies along the axis of dynamical symmetry, i.e.1 = (0, 0, [3).
The Lagrangian of the system has the form

L=LAQp*+g») +Cril+r — V. (92)

It is more convenient for our purpose to write this Lagrangian explicitly in terms of the
Eulerian angles as generalized coordinates

L' = J[A@B? +sin® 0y) + C(f cos O + @)1 + (Y cosf+@) — V. (93)
The cyclic integral for equation (93) can be written as

Dy + (C¢ +13) cos = const = f 94)
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where D = Asin? 6 + C cos? 6, that is
f—(Cp+13)cosb

P — 95
v D 95)
Ignoring ¥ we construct the Routhian
R— 1 42 + C sin’ 6¢? N (fC cos + Alz sin®0)¢@
T2 A—(A—=C)cos?6 ] A[A—(A—C)cos?0]
1 — I3 c0s0)?
Ly Zlheost) (96)
A 2[A — (A — C)cos? 6]

or, if we make the substitution cosf = u,
Rzl i? N C(1—u?)¢? N (fCu+Al;(1 —u?)@ 1 V4 (f —lu)? _
211 —u? A—(A—-C)u? A[A — (A — C)u?] A 2[A — (A — C)u?]
O7)

5.2. ldentification

First, we must set © = 1 and identify the variable £ with the angle ¢. Then, equating the
coefficients of ¢? in equation (97) and (%)2 in equation (81)

Cl—u?)  (yv+8@H’ +6av — f)

= 98
A—(A—-Cw? (Ba2+4Bv — 12012 — 4v4) ©8)
we can express # in terms of v. Inserting this expression into the relation
W2 3(yv+9) v\’ ©9)
1—u?  u@vd+6av—pB) \ dr

and demanding that it is satisfied identically for arbitrary values of v, we obtain only two
possible combinations of parameters:

(a) A=4C,a = —%,,3 =1,y = —%, 6= —%—forthis case we have v = %(300529 —1);
(b) A= %C,a =0, 8 = 1,5 = 0—for this case we have v = cos3 6.

5.2.1. Case (a). In this case, the Lagrangian (81) can be identified with the Routhian (97)
if we take the inertia matrix in the form I = diag(4, 4, 1), set the cyclic constant f = 0 and
choose

C1 201 (65
L=kt ——F -5,
V3 V3 Yitvs
A c1(dk +5¢c; +12¢5) 40% c% ek — ¢y +2¢) c%
V=ay+—-— 7 tos 4 st 2. .72 T 2. e
3 2y; Y3 Y3 Yitvs 2(]/1 +]/2)

(100)

where a, k, A, cy, ¢ are arbitrary parameters, introduced instead of the original parameters for
convenience. The choice (100) characterizes a new integrable problem in the dynamics of a
rigid body. It involves two parameters, ¢; and ¢, more than the case found recently by Yehia
[19] (¢; = ¢, = 0), three parameters more than both cases of Sretensky [20] (¢; = ¢, = A = 0)
and Goriachev (see, for example, [21]) (¢; = ¢ = k = 0) and four parameters more than the
classical case due to Goriachev—Chaplygin [22] (¢; = ¢c; =k =X = 0).

The potential term 4sy; is the potential of the rigid body whose centre of mass lies in
its equatorial plane in a uniform gravity field. The constant term & in the /3 component of



9486 H M Yehia

the gyroscopic vector potential is the gyrostatic moment due to a symmetric rotor spinning
regularly around the polar axis of the carrier body. The A-term with quadratic singularity has
appeared first in the works of Goriachev [23] (see, for example, [21]) and is common also
in certain other problems in rigid body dynamics [18]. The presence of the parameters c|
and ¢; leads to the simultaneous appearance in both potential and gyroscopic potentials of
singular terms, namely, poles of eighth and fourth degrees. This is a new situation in rigid
body dynamics and, in general, in integrable systems. The implications of these singularities
on the analytical properties of the solution of the equations of motion and on the qualitative
properties of motion should be quite interesting. This has not yet been done even for the
singular Goriachev potential.

5.2.2. Case (b). Inasimilar way we can construct the integrable case of rigid body dynamics
in which A= B =3, C =1and

4 240
et | ey +ea 2
(7’1 +)’2) vy
b 1 352 .
V = ((1+2y1) + ; ") —;l )/32 ()/32—4) —cl10 (5]@2 _2) _37101)/33 (101)
Vs (Vl +J/2)
4 2(7v2 =4 2(13v4 _8v2+4
—3}16'2)/33 (y32+2) _ )l ( V3g ) . Cz( V3 : V3 )

6)/33 2)/33
where a, b, n, c¢; and c; are arbitrary parameters. This is also a new case. It generalizes by
the addition of the parameters 7, c; and ¢, a known integrable case due to Goriachev [24].

6. Conclusion

The method applied here has once more proved effective in the systematic construction of
integrable mechanical systems with a polynomial second invariant, which is, in the present
work, of the third degree in velocities. We have restored almost all the previously known
results as special cases of more general ones and we have constructed several completely new
systems with a cubic integral. Our results have the advantage that the configuration manifold
is not Euclidean. This widens the scope of applications. For example, from one of the new
systems we have obtained, as special cases, new generalizations of the Toda system and of
the two known integrable cases with cubic integrals in rigid body dynamics, together with all
their previous generalizations by many authors.

To facilitate the solution of the system of partial differential equations, we have had to
impose the condition that after the transformation of the Lagrangian and the invariant of the
system to the forms (10) and (11) the force function has the structure U = u(n) + v(n) P (§).
The three known systems with a cubic invariant that do not appear in our results do not fulfil
this condition. These are:

(a) the case of plane motion of a particle found by Fokas [25] (and later by Inozemtsev [26]);

(b) the case of plane motion of a particle due to Calogero [27] and its degenerate versions
(see, for example, [3]);

(c) the case of motion of a particle on a sphere, found recently by Gaffet [28].
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